skip to main content


Search for: All records

Creators/Authors contains: "Kehayias, Pauli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2025
  2. Radio frequency (RF) magnetometers based on nitrogen vacancy centers in diamond are predicted to offer femtotesla sensitivity, but previous experiments were limited to the picotesla level. We demonstrate a femtotesla RF magnetometer using a diamond membrane inserted between ferrite flux concentrators. The device provides ~300-fold amplitude enhancement for RF magnetic fields from 70 kHz to 3.6 MHz, and the sensitivity reaches ~70 fT√s at 0.35 MHz. The sensor detected the 3.6-MHz nuclear quadrupole resonance (NQR) of room-temperature sodium nitrite powder. The sensor’s recovery time after an RF pulse is ~35 μs, limited by the excitation coil’s ring-down time. The sodium-nitrite NQR frequency shifts with temperature as −1.00±0.02 kHz/K, the magnetization dephasing time isT2*=887±51 μs, and multipulse sequences extend the signal lifetime to 332±23 ms, all consistent with coil-based studies. Our results expand the sensitivity frontier of diamond magnetometers to the femtotesla range, with potential applications in security, medical imaging, and materials science.

     
    more » « less
    Free, publicly-accessible full text available June 16, 2024
  3. Abstract

    Theoretical investigations suggest that magnetic fields may have played an important role in driving rapid stellar accretion rates and efficient planet formation in protoplanetary disks. Experimental constraints on magnetic field strengths throughout the solar nebula can test the occurrence of magnetically driven disk accretion and the effect of magnetic fields on planetary accretion. Here we conduct paleomagnetic experiments on chondrule samples from primitive CR (Renazzo type) chondrites GRA 95229 and LAP 02342, which likely originated in the outer solar system between 3 and 7 AU approximately 3.7 million years after calcium aluminum‐rich inclusion formation. By extracting and analyzing 18 chondrule subsamples that contain primary, igneous ferromagnetic minerals, we show that CR chondrules carry internally non‐unidirectional magnetization that requires formation in a nebular magnetic field of ≤8.0 ± 4.3 μT (2σ). These weak magnetic fields may be due to the secular decay of nebular magnetic fields by 3.7 million years after calcium aluminum‐rich inclusions, spatial heterogeneities in the nebular magnetic field, or a combination of both effects. The possible inferred existence of spatial variations in the nebular magnetic field would be consistent with a prominent role for disk magnetism in the formation of density structures leading to gaps and planet formation.

     
    more » « less